
7 Advanced Counting Techniques

7.1 Recurrence Relations

1. a recurrence relation for the sequence {an} is an equation that expresses an in
terms of previous term(s) of the sequence

2. a recurrence relation together with initial condition(s) determine a recursive def-
inition of the sequence

3. recurrence relations model compound interest problems, population increase/decrease
problems, determining the moves in the Tower of Hanoi puzzle...

7.2 Solving Recurrence Relations

linear homogeneous recurrence relation of degree k with constant coefficients

1. this is a recurrence relation that is linear (each term on the right hand side has a1
i

for all i ≤ n − 1, versus containing quadratic terms like a2
i ), homogeneous (each

term on the right hand side has some ai for some i ≤ n − 1, versus containing
constants or terms without ai), it has degree k (an is defined in terms of aj, where
aj is not more than k steps away from an, i.e. n−k ≤ j ≤ n), and the coefficients
of each ai are constants

2. the characteristic equation is obtained by replacing an by rn in the recurrence
relation (and canceling by the lowest power of r in the characteristic equation,
one can solve it for r)

3. solutions are of the form an = rn, or linear combinations of the roots to power n

4. to solve a linear homogeneous recurrence relation find the characteristic equations
and solve for the characteristic roots of the recurrence, and then use a linear
combination of the roots together with the initial condition to find solutions (if
there are repetitions in the roots, then use the monomial nj, where 1 ≤ j ≤ the
multiplicity of the root −1): Theorem: If the characteristic equation has t roots
ri (1 ≤ i ≤ t), each of multiplicity mi (

∑t
i=1 mi = k), then a sequence {an} is a

solution of the given recurrence relation if and only iff

an = (

m1−1∑
j=0

αjn
j)rn

1 + (

m2−1∑
j=0

βjn
j)rn

2 + . . .

for n = 0, 1, 2, . . ., where αj, βj are constants that you can find using the initial
conditions.
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nonlinear nonhomogeneous recurrence relation with constant coefficients

1. example: an = 4an−2 + 3n, with a0 = 0, a1 = 1

2. a solution of a recurrence relation of the form

an = c1an−1 + c2an−2 + . . . ckan−k + F (n),

(where F (n) is a function of n) is the sum of a particular solution and a solution
of the associated linear homogeneous recurrence relation an = c1an−1 + c2an−2 +
. . . ckan−k

3. there is no general method in finding a particular solution, however there are
techniques that work for certain types of functions F (n):

• if F (n) is a polynomial btn
t + bt−1n

t−1 + b1n + b0, then a particular root
will be a polynomial of the same degree t (see Example 10 and Homework
problem #25)

• if F (n) is an exponential sn, then a particular root will be an exponential
times a constant: c · sn (see Example 11 and Homework problem #23)

• if F (n) is a polynomial times and exponential, then the particular solution
is a combination of the two (see Theorem 6)

7.5 Inclusion-Exclusion

1. The principle of Inclusion-Exclusion: Let A1, A2, . . . , An be finite sets. Then

|A1∪A2∪. . . An| =
∑

1≤i≤n

|Ai|−
∑

1≤i<j≤n

|Ai∩Aj|+
∑

1≤i<j<k≤n

|Ai∩Aj∩Ak|−. . .+(−1)n+1|A1∩A2∩. . .∩An|.

2. if n = 2: |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2| and if n = 3:

|A1∪A2∪A3| = |A1|+ |A2|+ |A3|−|A1∩A2|−|A2∩A3|−|A1∩A3|+ |A1∩A2∩A3|
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7.6 Applications of Inclusion-Exclusion

1. if we’re counting the number N(P ′
1, P

′
2, . . . , P

′
n) of elements that do not have

properties Pi (1 ≤ i ≤ n) we can use the following: let Ai be the subset counting
the elements that have the property Pi (1 ≤ i ≤ n), and so the number of elements
without any properties Pi is N − |A1 ∪A2 ∪ . . . An|, where N is the total number
of elements in the set (the value |A1∩A2∩ . . . An| is denoted by N(P1, P2, . . . , Pn)
and it represents the number of elements that have the properties Pi (1 ≤ i ≤ n))

2. The Sieve of Eratosthenes is used to find all the primes not exceeding a specified
positive integer n: list all the natural numbers between 2 and n − 1 (inclusive),
and then keep the first prime number but delete its multiples, then keep the
second prime number but delete its multiples, . . . up to the largest prime number
that is less than or equal to n. To use the inclusion-exclusion principle: let P1 be
the statement that the first prime number divides n, P2 be the statement that
the second prime number divides n, . . . , Pk be the statement that the kth prime
number divides n (where the last prime number, k, is at most

√
n). Then

N(P ′
1P

′
2 . . . P ′

k) = (n− 1)−N(P1)−N(P2)− . . .−N(Pk)

+ N(P1P2) + N(P1P3) + N(P2P3) + . . . N(Pk−1Pk)

− N(P1P2P3)− . . .−N(Pk−2Pk−1Pk)

+ N(P1P2P3P4)...

3. The number of onto functions from a set with m elements to a set with n ele-
ments: if we let Pk denote the property that the value k is not in the range (i.e.
there is no value x of the domain that gets mapped to k), then

N(P ′
1P

′
2 . . . P ′

k) = N −N(P1)−N(P2)− . . .−N(Pk)

+ N(P1P2) + N(P1P3) + N(P2P3) + . . . N(Pk−1Pk)

− N(P1P2P3)− . . .−N(Pk−2Pk−1Pk)

+ N(P1P2P3P4)...

= nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m − . . . + (−1)n−1C(n, n− 1)1m

4. a derangement is a permutation of n objects that leaves no objects in their
original position (i.e. when permuting the elements, every element needs to
change its position). The number of derangements of n elements is Dn (let Pi be
the permutation that fixes element i (1 ≤ i ≤ n), and count Dn = N(P ′

1P
′
2 . . . P ′

n)
using the inclusion-exclusion principle))

Dn = n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!−

(
n

3

)
(n− 3)! + . . . + (−1)n

(
n

n

)
(n− n)!

Dn = n!
(
1− 1

1!
+ 1

2!
− 1

3!
+ . . . + (−1)n 1

n!

)
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